Modularity of regular and treelike graphs

نویسنده

  • Colin McDiarmid
چکیده

Clustering algorithms for large networks typically use modularity values to test which partitions of the vertex set better represent structure in the data. The modularity of a graph is the maximum modularity of a partition. We consider the modularity of two kinds of graphs. For r-regular graphs with a given number of vertices, we investigate the minimum possible modularity, the typical modularity, and the maximum possible modularity. In particular, we see that for random cubic graphs the modularity is usually in the interval (0.666, 0.804), and for random r-regular graphs with large r it usually is of order 1/ √ r. These results help to establish baselines for statistical tests on regular graphs. The modularity of cycles and low degree trees is known to be close to 1: we extend these results to ‘treelike’ graphs, where the product of treewidth and maximum degree is much less than the number of edges. This yields for example the (deterministic) lower bound 0.666 mentioned above on the modularity of random cubic graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modularity of tree-like and random regular graphs

Clustering algorithms for large networks typically use modularity values to test which partitions better represent structure in the data. We establish baselines for statistical tests on regular graphs, by showing that: for random cubic graphs the (maximum) modularity is usually in the interval (0.666, 0.804), and for random r-regular graphs with large r it usually is of order 1/ √ r. The modula...

متن کامل

Communities and bottlenecks: trees and treelike networks have high modularity.

Much effort has gone into understanding the modular nature of complex networks. Communities, also known as clusters or modules, are typically considered to be densely interconnected groups of nodes that are only sparsely connected to other groups in the network. Discovering high quality communities is a difficult and important problem in a number of areas. The most popular approach is the objec...

متن کامل

Treelike Comparability Graphs: Characterization, Recognition, and Applications

An undirected graph is a treelike comparability graph if it admits a transitive orientation such that its transitive reduction is a tree. We show that treelike comparability graphs are distance hereditary. Utilizing this property, we give a linear time recognition algorithm. We then characterize permutation graphs that are treelike. Finally, we consider the Partitioning into Bounded Cliques pro...

متن کامل

Treelike Comparability Graphs

A comparability graph is a simple graph which admits a transitive orientation on its edges. Each one of such orientations defines a poset on the vertex set, and also it is said that this graph is the comparability graph of the poset. A treelike poset is a poset whose covering graph is a tree. Comparability graphs of arborescence posets are known as trivially perfect graphs. These have been char...

متن کامل

Constructions of antimagic labelings for some families of regular graphs

In this paper we construct antimagic labelings of the regular complete multipartite graphs and we also extend the construction to some families of regular graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017